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Prediction of the Poisson's ratio of porous 
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An equation is presented for the prediction of the Poisson's ratio of porous materials. The 
equation is strictly derived for spherical porosity and isotropic materials and it is valid for the 
whole porosity range. For low porosity, the equation coincides with a published equation, 
which has been verified in the past by comparison with extensive experimental data. For the 
high-porosity range, the theoretical variation of the Poisson's ratio exhibits a trend 
converging to a value vp=0.5, when the porosity increases to P = I .  A similar converging 
trend has been found in other theoretical studies, but a rigorous experimental verification of 
such variations has stil l  to be carried out. 

1. Introduction 
Although the elastic behaviour of porous materials 
has received extensive experimental and theoretical 
treatment, there is very little work dealing directly 
with the porosity dependence of Poisson's ratio 

Aq/q 
v - (1) 

AI/I 

where q is the cross-section perpendicular to the stress 
direction, Aq the areal contraction under stress, l the 
length of the specimen in the stress direction, and A1 
the elongation in the stress direction. 

Because the overall volume of a specimen under 
stress is either enhanced or remains at least constant 
( A V / V  >~ 0) it was deduced [1] that the range of vari- 
ation of Poisson's ratio is 0 < v ~< 0.5. Formal thermo- 
dynamic considerations, however, result in a range of 
variation for the Poisson's ratio of isotropic materials 
of - 1 ~< v < 0.5 [2]. Nevertheless, the available ex- 
perimental data on the Poisson's ratio of porous mater- 
ials, as considered here, lie in the range 0 < v ~< 0.5. 
Being a dimensionless parameter, Poisson's ratio is 
a very useful elastic property because it enters in a num- 
ber of equations describing the fracture and deforma- 
tion behaviour of materials. Therefore, it is theoretically 
interesting and practically useful to obtain an accurate 
assessment of its dependence on porosity. 

It has frequently been considered that the variation 
of Poisson's ratio with porosity is negligible [3], espe- 
cially at high porosities, although this behaviour was 
not always confirmed by experimental trends. Indeed, 
most of the proposed theoretical equations have not 

been compared extensively with experimental data 
[4-8]  and, for example, two-dimensional finite ele- 
ment methods (FEM) of limited validity had to be 
used for comparison purposes [7]. It is possible to 
estimate Poisson's ratio using any two of the bulk, 
shear or Young's moduli, but an accurate estimation 
of the effective Poisson's ratio is difficult because of the 
large error involved. This is why many experimental 
investigations report only the qualitative trend of the 
variation of Poisson's ratio with porosity [9]. 

A quantitative effort was made by applying the 
self-consistent oblate spheroidal theory to fit experi- 
mental elastic constant data in porous ceramics [10]. 
The approach, however, as the author pointed out, 
seems to overestimate the value of Poisson's ratio for 
porosities above 30%. 

Recently, a new equation has been proposed and 
compared extensively with experimental data avail- 
able on porous ceramics [11]. This equation can be 
written as 

vp = 0.5 

(1 -- p2/a)l.21 [2(3 -- 5P)(1 -- 2Vo) + 3P(1 + Vo)] 

4(3 - 5P)(1 - P) 
(2) 

where P is the volume fraction of porosity and Vo is the 
Poisson's ratio of the porous-free material. 

Although the equation is strictly valid for spherical 
geometry, very good agreement with the experimental 
data was found, indicating a minor effect of the pore 
shape o n  the Poisson's ratio-porosity dependence. 
Moreover, it was shown that the equation predicts 
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the experimental data better than other proposed 
theories [4-6, 12] in its range of validity [13]. The 
disadvantage of Equation 2 is its validity only for low 
concentrations of pores {P < 0.5) and therefore it is 
unsuitable for considering foam-like or cellular mater- 
ials, This is why in this paper an approach is presented 
for the dependence of the Poisson's ratio of porous 
materials valid for the whole range of porosity, based 
on published equations for the Young's and bulk 
modnli and the relation between elastic constants in 
isotropic materials. 

2.  D e r i v a t i o n  o f  t h e  e q u a t i o n  a n d  
d i s c u s s i o n  

2.1. Y o u n g ' s  m o d u l u s  
An expression for the Young~ modulus of porous 
materials has been derived by substituting the real 
pore structure by a model microstructure of spheroids 
having the same surface to volume ratio as the real 
pores [14]. Two factors describing the pore structure 
remain relevant for the calculation [15]: 

(i) the shape factor (z/x), defined by the axial ratio 
of the substitutional spheroids; and 

(ii) the orientation factor, defined as cos2~, where 
is the angle between the stress direction and the 

rotational axis of the subsfitfitional spheroid. 

These two parameters can be accurately determined 
by quantitative image analysis of polished surfaces 
and stereological relations [15-] making the model 
very useful for practical applications. The final expres- 
sion for the Young's modulus of the porous material 
can be written as [14, 16] 

with 

Ee = E0(1 -- p2/3)l.21r 

F = ( z )  1/3{1+ E(z)  - 2 -  1]cosZo~} 1/2 (3) 

where Eo is the Young's modulus of the fully dense 
material. For the special case of spherical pores 
(z/x) = 1, the Young's modulus-porosity dependence 
can be expressed as 

Ep = Eo(1 = pZ/3)1.21 (4) 

These equations have been extensively tested by com- 
parison with experimental values on a variety of por- 
ous materials containing different pore structures and 
low porosities (P < 0.5) [16, 17]. Excellent agreement 
has been found between theory and experiment. For 
the high-porosity range, however, little experimental 
work has been reviewed until now for comparison 
purposes. As a first example for this comparison, 
Fig. 1 shows calculated and experimental values for 
highly porous materials such as cellular alumina [18], 
polymer foam [19] and porous silica gel [20]. Because 
no information about pore shape and orientation was 
available from the experimental studies, definite 
values (z/x = 4.5; cosZ~ = 0.33) for the shape factor 
and the orientation factor have been used for all calcu- 
lations, which refer to prolate isotropically oriented 
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Figure t Variation of the relative Young's modulus with porosity 
for highly porous materiats:(A) cellular alumina [18], ([]) polymer 
foam (19], (I) porous silica gel [20], Equation 3 with z/x = 4.5, 
( ) cos2u = 0.33. 

porosity and lead to the best fit. Although the agree- 
ment between experiment and theory as shown in Fig. 
1 confirms the applicability of Equation 3 for the 
high-porosity range, more experimental data are 
needed for a definite verification of the equations for 
highly porous or cellular materials. Model highly po- 
rous glasses with well-defined porous structures, pre- 
pared by sintering of hollow microspheres in a glass 
matrix, can be conveniently used for this purpose [21]. 

2.2. Bu lk  m o d u l u s  
Although an equation that gives the variation of the 
bulk modulus with the volume fraction of pores and 
the pore structure (shape and orientation of pores) has 
been published [22, 23], its mathematical complica- 
tion makes it unuseful for practical purposes, except 
its special case for spherical porosity. 

For low concentration of spherical pores, the equa- 
tion for the porosity dependence of the bulk modulus 
can be written as [22, 23] 

2(1 - 2Vo)(3 - 5P)(1 - P) 
Kp,1 = K0 (5) 

2(3 - 5P)(1 -- 2Vo) + 3P(1 + Vo) 

For the high-porosity range, an expression has been 
derived for the compressibility of a foam-like glass 
considering the stresses at equilibrium just before it 
"solidifies" [24]. According to this, the porosity de- 
pendence of the bulk modulus for spherical pores and 
high porosity can be written as 

Kv,2 = K0 2(1 -- 2Vo)(1 -- P) (6) 
3(1 - Vo) 

In order to obtain a single equation for the whole 
porosity range, Equations 5 and 6 may be mathe- 
matically joined by means of the following function 

1 
s - 1 + e - a ( P - b )  (7) 

where the fitting factors (a = 100; b = 0.4) have been 
chosen for the smoothest joint. Thus, the new 
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Figure 2 Variation of the relative bulk modulus with porosity: 
(a) Kerner [26], (b) Equation 8, (c) Ramakrishnan-Arunachalam 
[7], (d) Okana [25]. 
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Figure 3 Variation of the relative bulk modulus of porous glass: 
(O) experimental values 124], ( ) calculated values, Equation 8. 

equation for the porosity dependence of the bulk 
modulus, valid for the whole range of porosity can be 
written as 

Kp = (1 -- s)KeA + sKp,2 (8) 

Fig. 2 shows the theoretical curve according to Equa- 
tion 8 for Poisson's ratio vo = 0.2. Also shown in the 
figure are the predictions of other theoretical models 
[7, 25, 26J. Two of them appear to be upper [26] and 
lower [7] bounds for Equation 8 presented here, one 
model [24] predicts vanishing bulk modulus for a 
porosity lower than P = 1. 

Former experimental data for porous glass contain- 
ing a wide range of porosity [24] can be used for 
confirmation of Equation 8. Fig. 3 shows the compari- 
son between the calculated and experimental values 
confirming good agreement between theory and 
experiment. 

2.3 .  P o i s s o n ' s  ra t io  
The relation between Young's modulus, bulk modulus 
and Poisson's ratio for isotropic materials can be 

written as 

E 
v = 0 . 5 - - - -  (9) 

6/( 

Because Equations 5 and 6 (and hence Equation 8) are 
valid for spherical porosity, the following consider- 
ations for the porosity dependence of the Poisson's  
ratio will be restricted to this special case. Replacing 
the moduli (E and K) in Equation 9 by their porosity 
functions according to Equations 4 and 8, the porosity 
function of the Poisson's ratio of isotropic porous 
materials with spherical pores is obtained 

ve = 0.5 - (1 - p2~3)~.zl 

/ [4  (1 --s) p~t(3--5P)(1--P) 
2(3 - 5 . , d  - 2vo) + 3P(1 + Vo) 

(I -- P) ] 

+ s 3(1 -- Vo)J/ 
(io) 

with 

1 
S 

1 + e - t~176176  

This equation represents a better solution for the 
dependence of Poisson's ratio on porosity than the 
equation proposed earlier [11], because (a) it is valid 
for the whole porosity range, and (b) it provides 
a plausible result for the borderline case of a material 
without pores (P = 0 ~ ve = Vo; note that P = 0 re- 
suits in s ~ 0, Equation 7). 

The low-porosity range of Equation I0 coincides 
with Equation 2, which has been experimentally con- 
firmed by comprehensive comparison of calculated 
and measured values [11, 13] and by comparison with 
other theories [13]. Thus the experimental verification 
of Equation 10 for low porosity will not be repeated 
here, although it remains an open question, why the 
slope of the curve possesses a maximum, or, in other 
terms, why the slope is as it is. Interpretation and 
re-examination is desired here. Fig. 4 shows the 
theoretical variation of the Poisson's ratio with poros- 
ity for different values of the Poisson's ratio of the bulk 
material (Vo = 0.1, 0.25, 0.45) as calculated from Equa- 
tion 10. The slope of the curves itself again calls for 
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Figure 4 Theoretical variation of the Poisson's ratio with porosity, 
Equation 10, for different values of Vo (0.1, 0.25, 0.45). 
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Figure 5 Variation of the Poisson's ratio of porous gel-derived silica 
with porosity: (11)experimental values [27], ( ) calculated 
values, Equation 10. 

reconsideration and further examination. The theo- 
retical variation of the Poisson's ratio with porosity 
exhibits a general trend of converging to a particular 
value, vp = 0.5, when total porosity is approached 
- meaning the elastic moduli become zero. Similar 
trends have been found by other authors, however, 
with other convergence values (Zimmerman's 
equation ve = 0.2 for P = 1 [8]; Ramakrishnan- 
Arunachalam's equation ve = 0.25 for P = 1 [7]). 
Because of the lack of sufficient and reliable experi- 
mental data, a rigorous experimental verification of 
the converging trend of the Poisson's ratio-porosity 
dependence for the high-porosity range also remains 
an open question if, in addition, Fig. 5, showing data 
for a gel-derived porous silica [27], encourages us to 
follow the line proposed by Equation 10. This is 
a challenge, not a statement. 

Conclusion 
An equation has been derived for calculating the Pois- 
son's ratio of porous materials containing spherical 
porosity. The shape of the calculated Poisson's ratio 
versus porosity curves showing a relative maximum at 
low porosities and a minimum at porosities P ~ 0.4 

needs further re-examination and clarification. For 
low porosities, the equation coincides with a pre- 
viously published formula, which has been verified in 
the past by comparison with extensive experimental 
data. For high porosities, a converging trend of the 
Poisson's ratio to a value v = 0.5 for P -- 1 was found. 
Although similar trends have been predicted by other 
theories, there has been no rigorous experimental veri- 
fication of this behaviour due to the lack of available 
reliable data. 
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